TOSHIBA Photocoupler GaAs Ired & Photo-Transistor

TLP280,TLP280-4

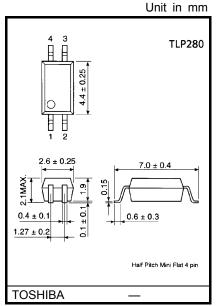
Programmable Controllers
AC/DC-Input Module
PC Card Modem (PCMCIA)

TLP280 and TLP280–4 is a very small and thin coupler, suitable for surface mount assembly in applications such as PCMCIA fax modem, programmable controllers.

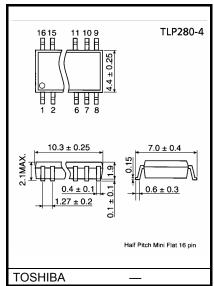
TLP280 and TLP280-4 consist of photo transistor, optically coupled to two gallium arsenide infrared emitting diode connected inverse parallel, and can operate directly by AC input current

• Collector-emitter voltage: 80 V (min)

• Current transfer ratio: 50% (min)

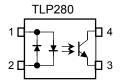

Rank GB: 100% (min)

• Isolation voltage: 2500 Vrms (min)

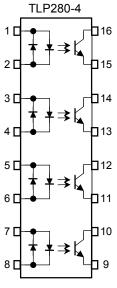

• UL recognized: UL1577, file No. E67349

• BSI approved: BS EN 60065: 2002,

BS EN 60950-1: 2002 Certificate No. 8143, 8144



Weight: 0.05 g



Weight: 0.19 g

Pin Configuration (top view)

- 1 : Anode Cathode
- 2 : Cathode Anode
- 3 : Emitter
- 4 : Collector

1,3,5,7 : Anode-Cathode 2,4,6,8 : Cathode

Anode 9,11,13,15 : Emitter 10,12,14,16 : Collector

Absolute Maximum Ratings (Ta = 25°C)

Characteristic		Symbol	Rat	Unit		
	Characteristic	Symbol	TLP280	TLP280-4	Offic	
	Forward current	I _{F(RMS)}	±50		mA	
LED	Forward current derating	ΔI _F /°C	-0.7 (Ta ≥ 53°C) $-0.5 (Ta ≥ 25°C)$		mA /°C	
	Pulse forward current	I _{FP}	±1 (100µs pulse, 100pps)		Α	
	Junction temperature	Tj	125		°C	
	Collector-emitter voltage	V _{CEO}	80		V	
	Emitter-collector voltage	V _{ECO}	7	7		
'n	Collector current	IC	50		mA	
Detector	Collector power dissipation (1 circuit)	P _C	150	100	mW	
	Collector power dissipation derating (Ta ≥ 25°C) (1 circuit)	ΔP _C /°C	-1.5	-1.0	mW /°C	
	Junction temperature	Tj	125		°C	
Storage temperature range		T _{stg}	−55~125		°C	
Operating temperature range		T _{opr}	−55~100		°C	
Lead soldering temperature		T _{sol}	260 (10s)		°C	
Total package power dissipation (1 circuit)		P _T	200 170		mW	
Total package power dissipation derating (Ta ≥ 25°C) (1 circuit)		ΔP _T /°C	-2.0	-1.7	mW /°C	
Isolation voltage (Note)		BVS	2500 (AC, 1min., R.H.≤ 60%)		Vrms	

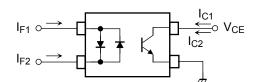
Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

(Note): Device considered a two terminal device: LED side pins shorted together and detector side pins shorted together.

Individual Electrical Characteristics (Ta = 25°C)

	Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
LED	Forward voltage	V _F	I _F = ±10 mA	1.0	1.15	1.3	V
	Capacitance	C _T	V = 0, f = 1 MHz	_	60	_	pF
	Collector–emitter breakdown voltage	V _(BR) CEO	I _C = 0.5 mA	80	_	1	٧
Detector	Emitter-collector breakdown voltage	V _(BR) ECO	I _E = 0.1 mA	7	_	-	٧
	Collector dark current (Note 1)	ICEO	V _{CE} = 48 V, Ambient light below (100 1x)	_	0.01 (2)	0.1 (10)	μΑ
			V _{CE} = 48 V, Ta = 85°C Ambient light below (100 1x)		2 (4)	50 (50)	μΑ
	Capacitance (collector to emitter)	C _{CE}	V = 0, f = 1 MHz	_	10		pF

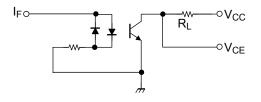

(Note 1): Because of the construction, leak current might be increased by ambient light. Please use photocoupler with less ambient light.

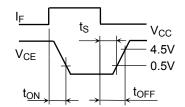
Coupled Electrical Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition	MIn	Тур.	Max	Unit
Current transfer ratio	I _C / I _F	$I_F = \pm 5$ mA, $V_{CE} = 5$ V Rank GB	50	_	600	- %
			100	_	600	
Saturated CTR	I _C / I _{F (sat)}	IF = ±1 mA, V _{CE} = 0.4 V Rank GB	_	60	_	- %
			30	_	_	
		I _C = 2.4 mA, I _F = ±8 mA	_	_	0.4	
Collector–emitter saturation voltage	V _{CE} (sat)	I_C = 0.2 mA, I_F = ±1 mA Rank GB	-	0.2	_	V
			_	_	0.4	
Off-state collector current	I _{C(off)}	V _F = ± 0.7 V, V _{CE} = 48 V	_	_	10	μΑ
CTR symmetry	I _{C (ratio)}	$I_C (I_F = -5 \text{ mA}) / I_C (I_F = 5 \text{ mA})$ (Note 2)	0.33	_	3	_

(Note 2):

$$I_{C(ratio)} = \frac{I_{C2}(I_F = I_{F2}, V_{CE} = 5V)}{I_{C1}(I_F = I_{F1}, V_{CE} = 5V)}$$


Isolation Characteristics (Ta = 25°C)


Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Capacitance input to output	Cs	V _S = 0V, f = 1 MHz	_	0.8	_	pF
Isolation resistance	R _S	V _S = 500 V, R.H.≤ 60%	5×10 ¹⁰	10 ¹⁴	_	Ω
		AC, 1 minute	2500	_	_	- V _{rms}
Isolation voltage	BVS	AC, 1 second, in oil	_	5000	_	
		DC, 1 minute, in oil	_	5000	_	V _{dc}

Switching Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Rise time	t _r		_	2	_	
Fall time	t _f	V _{CC} = 10 V, I _C = 2 mA	_	3	_	μs
Turn-on time	t _{on}	$R_L = 100\Omega$	_	3	_	
Turn-off time	t _{off}		_	3	_	
Turn-on time	t _{ON}		_	2	_	
Storage time	ts	$R_L = 1.9 \text{ k}\Omega$ (Fig.1) $V_{CC} = 5 \text{ V}, I_F = \pm 16 \text{ mA}$	_	25	_	μs
Turn-off time	toff	7 1	_	40	_	

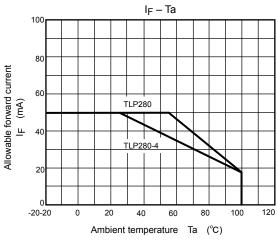
(Fig. 1): Switching time test circuit

3000

1000

300

100

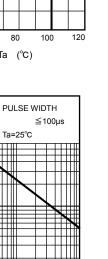

50 30

10

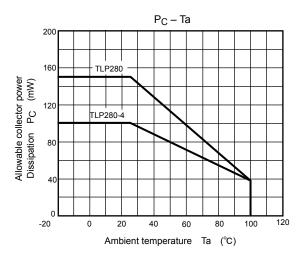
10

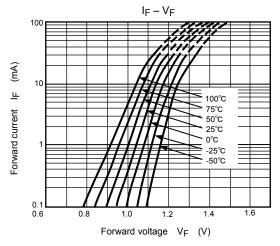
윤 500

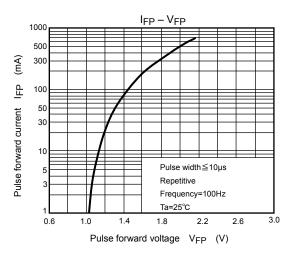
Pulse forward current

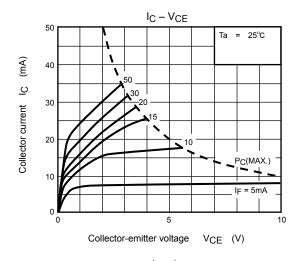


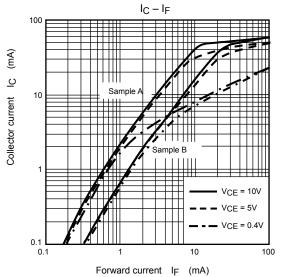
 $\mathsf{I}_{FP}-\mathsf{D}_R$

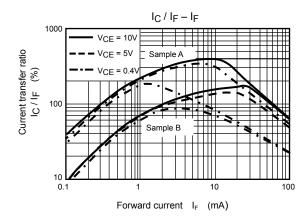

Duty cycle ratio DR

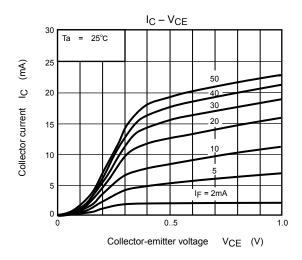

Ta=25°C

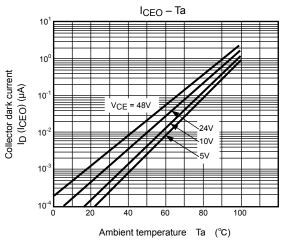

10

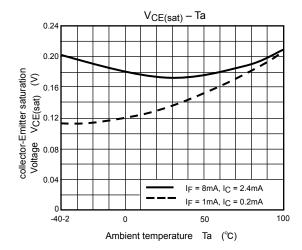


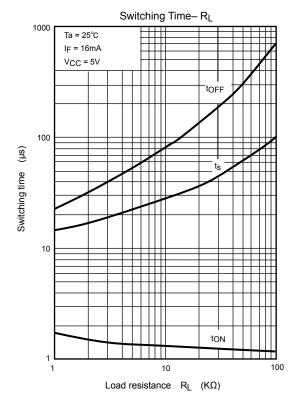


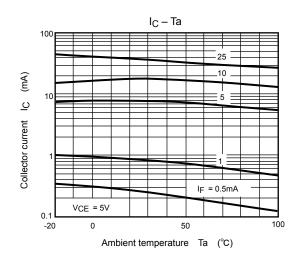


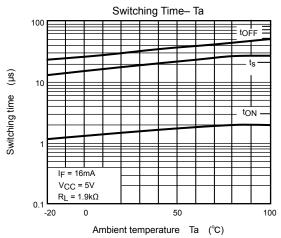












RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.